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Abstract A new analytical formula of the velocity profile for the laminar and turbulent flow in a tube with 

a circular cross-section will be introduced in this article. This formula is rather simple and it can be 

improved. This new formula will also be compared with two different power law formulas. The advantage 

of this new formula is that it can also be compared with the log lawnear the wall. 

1 Introduction 

The author is dealing with a fluid flow in a straight tube with a circular cross-section governed 

by the pressure gradient in this paper. Some fundamental ideas of the new velocity profile 

derivation and its comparison with current analytical formulas of the turbulent velocity profile will 

also be presented and discussed here. 

First the formula for the laminar velocity profile has to be mentioned. It is possible to find this 

derivation in each book dedicated to the fluid mechanics. The laminar velocity profile of the fluid 

flow governed by the pressure gradient is parabolic. 

  (1) 

Where R is the tube radius, v(av) is the average velocity over the cross-section. It is assumed 

that there is only one velocity component in the tube axis direction. 

Many researches have been trying to find an analytical solution of turbulent velocity profile in 

the tube. They are known as power law velocity profiles. The formulas used in [3] and [2] will be 

used here as the representatives of all these formulas. First formula is  

  (2) 

Where n is a coefficient which is a function of the Reynolds number. It has to be determined on 

the basis of the experimental data. The value n=7 is reasonable for many practical flow 

approximations. The expression before the square bracket is the maximum velocity in the tube 

center. 

The next analytical formula is 

  (3) 

The expression before square the bracket is also the maximum velocity in the tube center. The 

coefficient n0 is also a function of the Reynolds number and it can be expressed by the formula: 

  (4) 
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These two analytical formulas for turbulent velocity profile in a straight tube have some 

fundamental discrepancies. Both of them have a problem near the tube wall. This problem is 

in the infinite derivative valueon the wall which means that there is infinite shear stress on the 

wall. Which mean infinite friction losses in the tube. 

Next discrepancy is related to the velocity profile smoothness at the tube center. This is the 

problem of the formula used by Munson. The first derivative of this formula is not smooth in the 

tube center. The utilizing of these formulas is restricted because of these fundamental 

discrepancies. 

The problem near the wall has to be solved in a different way using other empirical formulas 

which are valid only near the wall. There is a boundary layer near the wall. The boundary layer 

is an area of the flow near the wall where the friction (viscous) forces are proportional to the 

dynamic forces. It can be also said that it is an area near the wall where the vorticity is not zero. 

It means that curl v is not zero. This boundary layer can be divided into three areas. The first of 

them is the one which is nearest to the wall.It is called viscous sub-layer. The second one is the 

transition area and the third one is the turbulent boundary layer. It is necessary to define some 

quantities in order to be able to describe the velocity profile in the boundary layer.    

  (5) 

Where v* is the shear velocity, w is shear stress on the wall,  is cinematic viscosity. Then it is 

possible to define the dimensionless distance from the wall (y+) and the dimensionless velocity 

(v+). 

  (6) 

  (7) 

Where y is the distance from the wall. 

The dimensionless velocity profile in viscous sublayer can be then expressed this way 

  (8) 

The dimensionless velocity profile in the turbulent boundary layer can be expressed by the log 

law. 

 (9) 

Different authors are using different values of the constants  and B. For example the 

coefficients used:=0,4 and B=5 in the book [3], = 0,173 and B = 5,5 in the book [2], =0,41 

and B=5,2 in the book [1].    

2 Introduction of a new velocity profile 

The new velocity profile is based on the vorticity density  distribution over the tube cross-

section. This vorticity induces the velocity. The relationship between the induced velocity and 

the vorticity density is through the Biot-Sawart law. The velocity induced by the circular vortex 
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filaments with constant vorticity i aligned in vortex tube with infinite length has to be expressed 

first. The situation is depicted in the fig. 1.  

 
Fig. 1Circular vortex filaments aligned in the infinite length vortex tube. 

 

The velocity induced by a vorticity closed inside the infinitesimal area dS of the vortex tube with 

radius R can be expressed.   

 (10) 

The Einstein summation convection is applied to the previous Biot-Sawart law expression. The 

meaning of the quantities in the expression (10) is as follows; i is the vorticity density vector, x’k 

are location coordinates of the induced velocity, xk are location coordinates of the  vorticity 

density vector, dS is an infinitesimal area with constant vorticity density vector, r is the distance 

between point x’k and xk. Area of integration S is an infinite cylindrical surface. 

It is possible to find the analytical solution of this integral. The velocity induced by this vortex 

tube can be then expressed. 

 (11) 

Where the j is a unit vector tangential to the vortex filament, n(r)k is the unit vector in r direction. 

The solution of a vector product is the unit vector in the tube axis direction. 

Now it is necessary to express the velocity for the case when the vorticity density is a function 

of radius inside of the tube. The variable radius will now be marked as r (radius of the vortex 

tube). The radius of the tube will be marked R. It means that there will be a continuous 

distribution of the vorticity density over the cross-section. It will be assumed, that the vorticity 

density distribution will be a polynomial function of variable r. 

 (12) 

The coefficients A(n) will be determined from the boundary conditions(slip condition on the wall), 

from a given flow rate through tube, and from the condition of smoothness. The velocity profile 

in a tube can then be expressed. 

 (13) 
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It is possible to compare this expression with the (1), (2) and (3). When N = 1 then it is the 

expression for a laminar velocity profile, for N > 1 it is turbulent velocity profile and for N→∞ it is 

a piston profile, it is the case of the infinite Reynolds number. N can be expressed from 

the pressure drop and flow rate in the tube. 

 (14) 

3 Discusion 

It is possible to compare velocity profiles (2), (3) and (13), see Fig 2. The comparison is done 

for Re = 10,186. The value of the n = 6, for this Re, is taken into consideration in case of the 

Munson’s power law velocity profile. The velocity profiles are normalized by the average velocity 

v(av).  

  
Fig. 2The comparison of velocity profiles Fig.3 The Comparison of velocity profile near 

the wall with the log law.  

It is apparent that all three velocity profiles are different. The new velocity profile hasa problem 

in the tube center because the second derivative is zero there. It means that the radius 

of curvature is also zero in that location. This is not realistic, but there is achance to remove this 

discrepancy and the author is working on this problem.  

It is also possible to comparethe new velocity profile with log law and viscous sub-layer in area 

near the wall. This comparison is outlined in the Fig. 3. It is not possible to do this comparison 

with the power law velocity profiles because they have the infinite derivative near the wall. It is 

apparent that the comparison with the log law is not bad. When the new velocity profile 

is improved, as mentioned in the previous paragraph, then the agreement with the log law will 

also be improved because the curve of the new velocity profile will be more flat. 
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