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1. INTRODUCTION

A natural direction for extending the normal distribution is the introduction of some sort of
skewness, and several proposals have indeed emerged, both in the univariate and multivariate
setting, see e.g. Azzalini (1985) and Azzalini and Dalla Valle (1996). Among those is the split
normal distribution, or the two-piece normal, originally introduced by Gibbons and Mylroie
(1973), with most of its known properties derived by John (1982); see also Kimber (1985) for
some additional results. Johnson, Kotz and Balakrishnan (1994) contains references to papers
where the split normal distribution is used as a statistical model. The easily interpreted form
of the split normal distribution has merited its use as a convenient vehicle for elicitation of
subjective beliefs (Blix and Sellin (1998); Kadane, Chan and Wolfson (1996)) which in turn
has motivated extensions to the multivariate case; see e.g. the bivariate translation approach
in Blix and Sellin (2000) and the discussion of Kadane et al. (1996) in Bauwens, Polasek and
van Dijk (1996).

In an influential paper on Monte Carlo integration, Geweke (1989) suggested a multivariate
generalization of the split normal distribution to be used in the construction of an importance
function. The density was only given up to a constant and no distributional properties were
presented. This paper derives some properties of this distribution and develops a complete
Bayesian inference procedure for this model.

The paper is outlined as follows. The next section gives a short review of the univariate split
normal distribution. Section 3 defines the multivariate split normal distribution and derives
some of its properties. Maximum likelihood estimation is discussed in Section 4. The fifth
section develops a Bayesian analysis of the multivariate split normal model, which may be seen
as a model based principal components analysis where a subset of the principal components
are allowed to have skewed distributions. The proposed inference procedures are illustrated in
Section 6 on national track records for the 1,500 meters event. The proofs have been collected
in an appendix.

2. THE UNIVARIATE SPLIT NORMAL DISTRIBUTION

The following definition is a reparametrization of the univariate split normal distribution
in John (1982).

Definition 2.1. x € R follows the uniariate split normal distribution, x ~ SN (u, A2, 72), if
it has density

crexp|—galw—p?|  ife<p

crexp |—gAm@—w?| iz

fx) =

where ¢ = \/2/TA" (1 4+ 7)7 L

The density of the SN(u, A2, 72)-distribution is thus proportional to the density of the
N(u, )\2)—distribution to the left of the mode, u, whereas to the right of the mode it is pro-
portional to the density of the N (i, 72\?)-distribution. For 7 < 1 the distribution is skewed
to the left, for 7 > 1 it is skewed to the right and for 7 = 1 it reduces to the usual symmetric
normal distribution. The fact that the SN distribution behaves like the well-known symmetric
normal distribution on both sides of its mode has been considered to be a very useful property
in practical work.

John (1982) derived several properties of the univariate split normal distribution. The
following result will be useful in the sequel.
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Lemma 2.1. If x ~ SN(u, \2,72), then

B() = pt 2\ —1)
Var(z) = b\

where b = T=2(1 — 1)> + 1.

The next lemma gives the univariate skewness

5 _ Ellr = B@)
' [Var(z)]3/2
and univariate kurtosis
5, _ Ella= B@)!
? [Var(z)]?

of a SN (p, A2, 72) variable.
Lemma 2.2. If z ~ SN(u, \2,72) then
By = b2\ 2/m(r = 1)[(4/x — 1)(7 = 1)° + 7]

and
By = b~%q,
where ¢ =3(1+7°)/(1+7) —4r 21— 7)* [+ m)(1 + 7%) + 3(7 — 2)7] .

The next lemma gives the moment generating function ¢, (t) = E(e!*) of a univariate split
normal variable as derived by John (1982).

Lemma 2.3. If x ~ SN(u, A2, 72), then
22 {exp(=N?12/2)®(—At) + 7 exp(—AN°722/2)B(—A7t) }

(1) A1+ 7) exp(ut)

3. THE MULTIVARIATE SPLIT NORMAL DISTRIBUTION

The following definition is a natural generalization of the univariate split normal distribution
in John (1982) to the multivariate setting and is a reparametrization of the multivariate split
normal distribution in Geweke (1989).

Definition 3.1. A vector x € RP follows the g-split normal distribution, x ~ SNy(u, 3,7, Q),
if its principal components are independently distributed as

Vx ~ SN(/U;/%;\?’T?) ij-G Q
! N (vjp, A5) if j € Q°,
where @ C {1, ...,p} of sizeq, Q° = {1,2,...,p}\Q is the complement of Q, v; is the eigenvector

corresponding to the jth largest eigenvalue in the spectral decomposition of ¥ = VAV', A =
diag()\?, ..., )\12,) and T = (7j)jco is a g-dimensional vector of contraction/dilation parameters.

Consider the case Q@ ={r} for illustration, i.e. where only the rth principal component has
a skewed distribution. It is then easy to see that the density of z is
coexp{—g(x—p/S e -} if v(r—p) <0
flo) = c-exp{—%(x—u)/Efl(x—u)} if vl(z—p) >0,



4 MATTIAS VILLANI AND ROLF LARSSON

Sf | (S
=2

4 L L L L L L L ) 4

L L L L L L )
-4 -3 -2 -1 0 1 2 3 4 -4 -3 -2 0 1 2 3 4

FiGURE 1. Contour plots of bivariate 1-split normal density functions.
w=(-1,2),2=(1,p;p,1), @=1and 7 = 2.

where 3 = VAV', A = diag()3, ..., 7372, ..., A2) and ¢! = $(2m)?/2 |A]"/? (14 71). This should
be compared to the univariate case in Definition 1. Figure 1 illustrates two possible shapes of
the SNy (p, 3, 7, Q)-distribution.

The general SNp(p, X, 7, Q)-distribution amounts to using different multivariate normal
distributions, all with mode u, over 29 regions of RP separated by the ¢ hyperplanes v;- (z —
u) = 0, for j € Q. Other forms of the separating hyperplanes, or more general changes in
covariance structure between the 27 regions, produce ill-behaved densities with sharp ridges.
The normal and split normal distributions in Definition 3.1 may obviously be replaced by
other distributions, e.g. the ¢ distribution (Geweke, 1989).

The following results give some properties of the SN,(u, X, 7, Q) distribution. In the fol-
lowing theorems, let b; = “T_Q(Tj —1)2+7; for j € Q. Our first result generalizes Lemma 2.1

to the multivariate setting.

Theorem 3.1. If v ~ SNy(11, 2,7, Q), then
E(x) = p+ \/2/772)\3-(7'3- — 1),
Q

Var(z) = VAV’
where A is a diagonal matriz with ith element equal to )\]2- if j € Q° or bj)\? ifj € Q.

Let
My, = (x —m)'S™ (z —m),
be the Mahalanobis distance between two p-dimensional independent identically distributed
random vectors x and z, where m and S are the common mean and covariance matrix, re-
spectively. Mardia (1970) used M, to define a widely used measure of multivariate skewness

ﬂl,p = E(Mgz)
Note that if 2 ~ Np(u, ¥), then 3y, = 0. By, is related to the univariate skewness through

the equality 3, ; = B%. The Mahalanobis distance may also be used to define multivariate
kurtosis (Mardia, 1970)

ﬂZ,p = E(Mcgz)
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If 2 ~ Np(p, %), then 8y, = p(p + 2). Note also that 35, = B5. The following result is the
multivariate extension of Lemma 2.2.

Theorem 3.2. If x ~ SN(u, %, 7, Q) then
Brp = Zb (2/m)(r; = D?[(4/7 = 1)(7; — 1)* + 7]

Bop = p(p+2 +> b;%q; - 3q,
9

where q; = 3(1 +7’?)/(1 +75) —4n 72 (1 —7;)? [(3 +m)(L+ 75 H 4+ 3(r — 2)7']}

The moment generating function ¢, (t) = Elexp(t'z)] of a SNp(p, X, 7, Q) variable is given
in the next result.
Theorem 3.3. If v ~ SNy(1, 2,7, Q), then

2 {exp[—()\jvg-t)Q/Q]@(—Ajvg-t) +7; exp[—()\jTjU;-t)Q/Z](I)(—)\jTjU;-t)}

6.(t) = IQ[ N (14 75) exp( o)

X exp {Z[,ujvg-t - %(U;-t)2>\]2-]} .

Qc
4. MAXIMUM LIKELIHOOD ESTIMATION

Before embarking on the multivariate case we give a useful lemma concerning maximum
likelihood estimation in the univariate setting.

Lemma 4.1. Given a random sample x1, ..., x, from SN(p, A2, 72), the likelihood, maximized

over \ and T, is
= 2n\"/? ~3n/2
Liw=(=) 9w :

e
where
1/3 1/3
g = s +s
s1 = Z(xz*/i)2v
T
S22 = Z(xz*/i)2v
IC

where T ={i=1,..,n: (x;—p) <0} and ¢ = {i = 1,...,n : (x; — u) > 0}. Moreover, the
mazimum likelihood estimators of A and T are

2/3

2 Sl/g(U)’
n
-l
51/

We now turn to maximum likelihood estimation in the multivariate case. It is possible
to maximize the likelihood analytically w.r.t. A and 7. The result is given in the following
theorem.
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Theorem 4.1. Given a random sample of vectors 1, ...,x, from SN (u, %, 7, Q), where ¥ =
VAV, the likelihood, mazximized w.r.t. A and T is

9(g—p/2)npqn/2

L(p,V,Q) = o IT % vy I 95 (. v) 22,
jeQe JjeEQ
where
9 <u,v>—si§3+ éf”,
where s15 = 37 [vj(wi — w)*, T = {i = 1,om c vj(mi — p) <0}, 895 = Sogelvf(ws — p)f?,

Z$ ={i = 1,..,n: vi(x; — u) > 0}, and the mazimum likelihood estimators of )\2 and T; are

~2 —82/39 (V) ifjeQ
N =9 T ’
(1, V) { %i?:l[ v (x; — p)]? if j € QF,

- 52, 1/3
T (1, V) = <;> .
J

We may use this theorem for numerical maximization of the likelihood w.r.t. g and V, for
a given Q. In the two-dimensional case, V may be explicitly parametrized as

cosf siné
(4.1) V_<sinc9 cos@)’ _§<0<§
A similar parametrization of V' is available in the general case using Eulerian angles (Kha-
tri and Mardia, 1977). Hence, maximization over V and p is straightforwardly performed
with standard numerical optimization algorithms. Alternatively, Edelman, Arias and Smith
(1998) have developed optimization algorithms on the Stiefel manifold (the set of orthonormal
matrices) which avoid an explicit parametrization of V.

and

5. BAYESIAN INFERENCE

Let z1, ...,z be a random sample from SNp(p, X, 7, Q). The joint posterior distribution of
all parameters may be written as

P, VoA T, Qo qlan, o ) = p(p, VoA T1Q, ¢, 21,4 s 20)P(Q, g1, -y T
Let us first focus on p(u, V, A\, 7|Q, ¢, x1, ..., xn) and subsequently turn to the posterior infer-
ences of Q and ¢. Given a prior distribution p(u, V, A, 7|Q, q), the posterior distribution is
obtained by Bayes’ theorem as

p(u, VoA T1Q, ¢, 21, o0y @) X D(T1, oy T |0, VoA, T, Q, @)1, Vo A, T Q, @),

where p(x1,...,zp|p, V, A\, 7, Q, q) is the likelihood function.
We note that our Bayesian procedure is applicable also in the univariate case in John (1982),
who derives estimators using the method of moments and maximum likelihood.

5.1. Prior distribution. We will assume independence between u, V, A and 7 a priori. The
following priors will be used for 4 and the 7’s

o~ Np(pg, Q0),

7']-_2 ~ Ga('yj,éj), i=1,..,q,

with independence between the 7’s a priori. All gamma distributions are parametrized so
that, for example, E(T;Q) = 7]-6]71.
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One suggestion for a prior on the X’s is
)\;2 = )\;_21 + €5, ] = 17 - Dy

where )\(2) = 0 and €1, ..., g, are independently Ga(a;, Bj) distributed. This prior satisfies the
order restriction A; > --- > A, with probability one. Note that if 5; = g for all j =1, ..., p,

then )\;2 ~ Ga(zgzl «;, #) which may be useful for elicitation, but is perhaps too restrictive

for some applications. An alternative prior density for (A\;?, ..., Ay 2) is proportional to the
product of Ga(ay,3;) densities, j = 1,...,p, except on the subset of RP where the order
restriction is violated where the prior density is defined to be zero. This is a less appealing
prior from a substantive point of view, but has the advantage of simplifying the posterior
computations. We shall for simplicity present the posterior algorithm for the latter prior.

The space of V' is the oriented orthogonal group O (p) = {V € RP*P : V'V = I, and vj; > 0
for j = 1,...,p}. The usual definition of a uniform distribution on O (p) is the conditional Haar
invariant distribution (Anderson, 1958). To illustrate this distribution, consider the bivariate
case where V' may be explicitly parametrized as in (4.1). In this case, the conditional Haar
invariant distribution reduces to a uniform distribution on the angle 6 (James, 1954). Other
more informative priors may be defined with respect to this uniform measure, for example the
matriz Fisher (MF') distribution first proposed by Downs (1972). The matrix Fisher density
is of the form

p(V) = [oFl (g, iFFﬂ  explir FV)[av],

where F' = V,3, is the polar decomposition of F', with V,, € O(p) and 3, is positive definite,
and [dV] is the probability element of V on O(p). The hypergeometric function oFy (§, 1 F'F)
will cancel in all posterior computations (see the Metropolis-Hastings algorithm below) and
hence need not be evaluated. The matrix Fisher density has mode equal to V), and XJ,, controls
the spread around the modal point. The fact that the matrix of eigenvectors is restricted to
have positive first element in each column only affects the matrix Fisher density by a constant

and may be disregarded for the purposes here. We will assume that V' ~ M F(V,,,¥,,) a priori.

5.2. Posterior distribution of u, V, A\, 7 conditional on Q and ¢. The posterior distribu-
tion of u, V, A\, 7 conditional on Q and ¢ is intractable. We shall devise a numerical algorithm
to sample from this distribution using the posterior distribution of each parameter conditional
on all other parameters, the so called full conditional posteriors. As it turns out, some of these
full conditional posteriors are non-standard and direct sampling is inefficient. We therefore
sample from these distributions using the Metropolis-Hastings (MH) algorithm (see e.g. Gilks,
Richardson and Spiegelhalter, 1996, for an introduction). At the tth step of the algorithm, a
candidate draw is generated from a proposal density, q(ys+1|y:) in general, which may be of
essentially any form, but for efficiency reasons should furnish a reasonably accurate approx-
imation to the target density, p(y:+1). Note that the proposal density is allowed to depend
on the most recent draw, y;. The candidate draw is then accepted with Markov transition
probability

P(We+1)q(yeyr+1)
(Y1) q(ye+1lyt)
If the transition from y; — y.41 is rejected, then the Markov chain does not move, i.e. ¥4 =
Yt.-
The following notation will be used. x = (x1,...,2,)" is the n X p matrix of sample obser-
vations. Let z;; = v} (z; — p) be the demeaned score of z; on the jth principal component

J
and Z = (z;;) = (z — tpp/)V the n X p matrix of demeaned principal component (PC) scores

(5.1) m(ys — Y1) = min |1,
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for the whole sample, where ¢, is an n dimensional vector of ones. On any such demeaned
PC score matrix Z we define the sets Z;(Z) = {i € {1,...,n} : z;5 <0}, j = 1,...,p. I;
thus contains the indices of the observations with a non-positive score on the jth demeaned
principal component. Furthermore, let n; = |Z;| and Z¢ = {1,...,n}\Z;. Let Vg = (vj)je0
and A, = diag()\]z) jeg denote the matrix of eigenvectors and diagonal matrix of eigenvalues
corresponding to the principal axes defined by Q. Vge and A, are defined analogously. Fur-
thermore, Zg = (25)jeq = (z — tnpt')Vo, where z; denotes the jth column of Z, and Zge is
defined correspondingly. Finally, z;; = (2ij)icz; and z,; = (Zij)ieI;-

Theorem 5.1.
o [ull conditional posterior of \;
n Z;»Zj o .
2 Ga (o + .8, + ) ifjeQ
)\7 |AL7‘/;)\7-’T’Q’C]’J,‘N - ‘ T‘fz,. ‘
J ] e (%' + 5,8+ ) ifjcQ

o Full conditional posterior of T;

N22 oz
p(r; 2 VoA 75, Q. @) o< (1725 (14 7)) exp [—752 <6j + JTJ’)] :

e Full conditional posterior of V

1
PVl A7, Q,q,0) ocexp § =5 |AQ ZoeZge + ) 5 (Zl/,jZlJ + TJQZL,qu,j>
jeQ

e Full conditional posterior of u

1

V.7, Qo) xexp { =5 [al) + (u— 1) (V'Y + 9570~ ] }.

where A = diag(ly, ..., 1), lj = n_l)\g for j € Q° and lj = [n; + 7']72(71 - nj)]_l)\g for j e Q°,

P
p= VAW 0 o+ Z)\;ijvg-wj ,
j=1

where wj = nZ if j € Q° and w; = n;T; + 7';2(71 —n;)T5 if j € Q, and

a(p) = Z )\;2 tr UjU;- Z i + 7';2 Z v | - @ (VAIV + Q.
JEQ i€T; i€TS

The full conditional posterior of Ay, ..., A, is easily sampled using a standard generator of
Gamma variates. A draw which violates the order restriction A\; > --- > A, is simply rejected
with probability one.

The full conditional posteriors of 7;, V' and p are non-standard, and the MH algorithm will
be used to generate variates from these distributions as described above. The proposals for
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7;2 will be sampled from 7;2 ~ Ga(p;,n;) with n; = 6; + 2*1()\;227’L’jzu7j), and p; chosen so
that the mode of the proposal density matches that of the full conditional posterior of 7']72:

lde 3(vs—1)+n. 2
Rﬁﬂ+ﬂ<4+lh_l_ﬁ_07

9\, d;
where
2/3 2Tn 3/2 -1/2 3 n, o 1/2 1/3
dj =m; {9(vj—1)+7—nj+3 1; ((1—%) +gﬂ7j+(1—w—§)nj) }
and

91— yn 27’
2 16 °

We now turn to the proposal for p. Note that when p traverses RP the index sets 11, ..., 7,
change in a discrete fashion, which in turn brings forth changes in a(u) in the full conditional
posterior of pu. The full conditional posterior of u is therefore not a multivariate normal
distribution, but is locally proportional to the N[z, (VA™'V’+Qy1)~!] density on the subsets
of RP where a(u) is constant. This suggests the following two reasonable proposal densities:
fer1 ~ Nplft, ((VATIV + Qo)™ or pueyq e ~ Nplpg, R(VATV! 4+ Qg 1)1, where y, is the
candidate draw at iteration ¢t and h > 0 is a scaling factor to fine tune the algorithm.

A proposal for V is constructed by applying a random Givens rotation (see e.g. Golub and
Van Loan, 1996) to the columns of the current V. The Givens matriz for the (i, j) coordinate
plane in RP, denoted by G;;(0;;), is p x p with unities on the diagonal except in the (i,1%)
and (j,j) positions which are equal to cosf;;, and all off-diagonal elements are zero except
in the (¢,7) and (j,4) positions which contain sin §;; and — sin 6;;, respectively for j > i. For
example, the matrix in (4.1) is the only Givens matrix in R2. Note that postmultiplication
of V' by Gj;j(0i;) amounts to a counterclockwise rotation of 6;; radians of the coordinate plan
spanned by the ith and the jth column of V. The coordinate plane (i,j) may be chosen
randomly from the set of p(p — 1)/2 possible coordinate planes with equal probability on all
planes and the angle 6;; generated from a generalized Beta(¢,§) density taking values in the
interval [—m/2,7/2). The fact that 6;; is distributed symmetrically around zero makes the
proposal density symmetric, i.e. q(Viy1|Vi) = q(V¢|Vis1). This leads to a simplified version of
the acceptance probability (5.1) where only the target density needs to be evaluated

p(‘/ﬂl)}
(Vi) |~

It is of course possible to rotate along several coordinate planes simultaneously by postmulti-
plying with a product of Givens matrices.

An alternative approach to sample V' is to use a Matrix Fisher distribution as a proposal
with a mean matrix equal to the maximum likelihood estimate of V' and covariance matrix
modeled on the asymptotic covariance matrix of the ML estimate. An efficient algorithm for
generating variates from the Matrix Fisher distribution is still to be developed, however.

Initial values for the model parameters are needed to start up the algorithm. The maximum
likelihood estimate is a natural candidate. The ML estimate must be obtained by numerical
optimization, however (see Section 4). A rough initial value may be obtained as follows.
An estimate of the data mode may be used as initial value for u, perhaps using a kernel
density estimator (Silverman, 1986). By Theorem 3.1, V' may be initialized by the matrix of
eigenvectors of the sample covariance matrix and )\]2-, j € Q¢, by the eigenvalues corresponding

g9i=2—4v;+ 27 -

7I-(‘/t - ‘/tJrl) = min [17

to Q.. The remaining eigenvalues )\?, j € Q may be estimated by )\? =Var((z,,—2,)]: j €
Q, i.e. the variance of the jth principal component’s non-positive scores and the same values
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reflected to the positive part of the axis; similarly we may use 7]2- = A;QVar[(z:L’j, —2y,3)'];
2
j-

j € 9, as initial values for 7

5.3. Posterior distribution of Q and ¢. By Bayes’ theorem, the joint posterior distribution
of Q and ¢ is

p(Qv Q|7x1a 7xn) X p(xlv "'7xn‘Qa Q)p(Q|Q)p(Q)a

where
p(m,---,fcn\Q,q)=////p(:vl,---,xnlu,V,AmQ,q)p(u,V,A,T\Q,Q)dud‘/d/\dﬂ

is the marginal likelihood of the model with ¢ skewed principal components given by Q. Note
that for a fixed ¢, the set of possible Q’s is the set of (—pi!Lq)! possible sequences of size ¢ from

the integers {1,...,p}. Normally, some of the (Q,¢q) pairs will be assigned zero probability a
priori and therefore excluded from the analysis.

The marginal likelihood, p(z1, ..., 2,|Q, ¢), is not tractable but may be computed from the
posterior sample from p(u, V,\,7|Q, q, 21, ..., ) using, for example, the modified harmonic
mean estimator (Geweke, 1999). It should be remarked that while it is possible to use improper
priors on all model parameters in the computation of p(u, V, A\, 7|Q, q, x1, ..., x,), this is no
longer an option if also ¢ is analyzed as this will produce indeterminate marginal likelihoods
(O’Hagan (1995)). It is sufficient, however, to use a proper prior on 7; p, V and A may still
be assigned improper priors as the dimension of their spaces does not vary with gq.

6. EMPIRICAL ILLUSTRATION

We illustrate the proposed inferential procedures on a data set on track records for 55
nations. The data are taken from the IAAF/ATFS Track and Field Statistics Handbook for
the 1984 Los Angeles Olympics. Dawkins (1989) uses this data set to analyze eight different
track events ranging from 100 meters to the marathon. Separate analyses are made for men and
women. Here we restrict the analysis to the 1,500 meters event, but analyze men and women
jointly. The observations are measured in minutes and are first analyzed in unstandardized
form.

A scatter plot of the raw data with an overlaid kernel estimate of the density is displayed in
Figure 2 (upper left corner). The skewness in the distribution is clearly visible. We investigate
this formally by comparing the following three models:

(1) Symmetric model. @ =@, ¢ =0.
(2) Skewness in the first principal component. Q@ = {1}, ¢ = 1.
(3) Skewness in both principal components. Q = {1,2}, ¢ = 2.

Note that we have excluded the model with skewness in only the second principal component
(Q={2}).

Ol/l\I‘ first task is to make inferences on q. The ML estimates and maximum log likelihoods
(log Ly) of our three tentative models are shown in Table 1. The likelihood ratio test, i.e.
—2(log Eg —log El), of ¢ = 0 against ¢ = 1 gives a test statistic of 22.3, which has a p-value of
21075 with respect to its approximate y? distribution with one degree of freedom. The test
of ¢ =1 against ¢ = 2 gives a test statistic of 12.4, which corresponds to a p-value of 0.0004.
Thus, the likelihood analysis suggests quite strongly that g = 2.

To compute the posterior distribution of ¢ we will use a uniform prior on all parameters with
the exception of the asymmetry parameters in 7. For the sake of presentation we consider what
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FIGURE 2. Kernel density estimate of the data (I). Estimated split normal
density based on the maximum likelihood estimate for ¢ = 0 (II) and ¢ = 1
(ITT). Estimated split normal density based on the posterior mean for ¢ = 1
(IV). The prior with § =1 is used.

may be called a sceptics prior for 7 which centers over the symmetric model, i.e. E(TIQ) =
E(r5?%) = 1. Specifically, we assume that

1% ~ Gal(é,9),
752 ~ Ga(26,26),

where 6 may be used to adjust the precision of the prior around the mean of unity. Note
that the prior becomes tighter around the symmetric model as 6 increases and that the prior
variance of 75 2 is one half that of 71_2, reflecting the judgement that the second principal
component is more likely to be symmetric than the first.

All presented Bayesian analyses are based on 100,000 draws from the posterior. No con-
vergence problems were encountered. The posterior distribution of ¢ is given in Table 2 for
several different values for §. The Bayesian analysis is in favor of ¢ = 1, unless the prior is
very tightly concentrated around the symmetric model (6 = 50), but there is also a relatively
large posterior probability on ¢ = 2. Figure 2 shows the fit of the models ¢ = 0 and ¢ = 1 for
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Model ﬁl ﬁ2 0 )\1 )\2 ’/7'\1 ’/7'\2 log Lq
g=0 433 370 041 0361 0.068 -— - 48.35
ML g=1 401 356 041 0.068 0.059 888 — 59.48

g=2 402 352 038 0.059 0.027 887 3.54 65.68
g=0 4326 3.698 0.406 0.365 0.070 — - -

Posterior mean ¢=1 4.051 3.580 0.407 0.109 0.068 5.339 — -
g=2 4.065 3.566 0.398 0.114 0.077 4.948 1.423 -

TABLE 1. Point estimates of the models parameters. The posterior mean is
computed for the prior 6 = 1.

Model 6=.1 6=5 6=1 6=3 6=5 6=10 6=50
g=0 0.000 0.000 0.000 0.002 0.018 0.133 0.468
g=1 0845 0.703 0.686 0.680 0.624 0.560 0.361
g=2 0.155 0.297 0.314 0.318 0.358 0.307 0.172

TABLE 2. Posterior distribution of ¢ for different values on the prior hyperpa-
rameter 0.

different point estimates of the model parameters (see below). The symmetric model (¢ = 0)
appears to fit the data poorly with too few observations near the center of the density. The
model with one skewed principal component does a much better job.

The ML estimate and the posterior mean estimate (6 = 1) of the models’ parameters are
shown in Table 1. Since we are using a uniform prior on g, A and 8, the ML, and Bayes
estimates are very close for those parameters. The informative sceptic’s prior on 7 has the
effect of moving the ML estimates toward the point of symmetry (79 = 79 = 1). This, in turn,
produces larger Bayes estimates of A\; and Ay compared to the ML estimates, since the \’s
must be increased when the 7’s decrease in order to match the variance in the data.

We condition the remaining analysis on ¢ = 1. The marginal posterior distributions of the
models parameters are displayed in Figure 3; the eigenvectors in V' will be analyzed below.
The upper right subfigure shows that the posterior uncertainty of 71 is rather large but that
the point of symmetry, 71 = 1, does not belong to any reasonably sized probability interval.
Note that the gamma prior on Tf2 has been converted into a prior for 71, which belongs to the
square-root-inverted gamma family (Bernardo and Smith, 1994). Alternatively, one may look
at the multivariate skewness in the upper right graph of Figure 3. The posterior distribution
of the skewness is computed by inserting the posterior draws of 71 into the expression for the
multivariate skewness in Theorem 3.2. The lower left graph shows that the proportion of total
variance explained by the first principal component is rather close to unity.

The mean acceptance probabilities in the Metropolis-Hastings algorithm for ¢ = 1 and the
prior with & = 1 were 0.581, 0.759 and 0.975, for V,u and 7, respectively. The very large
acceptance probability of 7 is a result of the Gamma proposal density being a very accurate
approximation of the full conditional posterior, so that the Metropolis-Hastings 7-step is
essentially a Gibbs step.

The principal components are not invariant to the scale of the original variables. To analyze
the principal components in some more detail, we scale both variables to have unit variance.
The ML estimate of 0 is 0.777. The posterior mean of 0 is 0.787 which translates into v; =
(0.706,0.708)". The first principal component may therefore be interpreted as an overall
measure of performance on 1, 500 meters for both women and men. The posterior distribution
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of the first principal component zv; thus gives us the posterior distribution of the overall rank.
Table 3 displays the posterior distribution of the overall rank for the top five nations. The
good performance of the U.S. for both men and women places them unambiguously first in
the ranking. It is also possible to compute the posterior probability that e.g. Norway (rank
15 according to the posterior mean of the 1st PC) is better than Kenya (rank 11 according to
the posterior mean of the 1st PC), which is 0.173.
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Nation Women  Men  Post. mean  Post. distr. of overall rank (1st PC)
U.S. 2nd 3rd 1st 1st (1.00)
G. Britain 9th 1st 2nd 2nd (0.82), 3rd (0.17)
U.S.S.R. 1st 13th 3rd 2nd (0.17), 3rd (0.82), 4th (0.01)
F. Rep. of Ger. 8th 2nd 5th 3rd (0.01), 4th (0.10), 5th (0.89)
German D. Rep. 3rd 8th 4th 4th (0.89), 5th (0.16)

TABLE 3. Ranking of nations. Second and third columns give the nation’s
rank for men and women separately. The fourth column contains the ranking
based on the posterior mean of the first principal component (¢g=1). The last
column displays the posterior distribution of the overall rank based on the first
principal component (¢=1).
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APPENDIX A. PROOFS
A.1. Proof of Lemma 2.2. From John (1982) we have
E[{z — E(x)}*] = V2/7A(r — D)[(4/7 — 1)(A\(T — 1))% + \27].

Make the transformation y = (z — ) /). It is easy to see that y ~ SN(0, 1, 72) with Var(y) =
A"2Var(x) = b. Since skewness is invariant to linear transformations we have

B@) = By(y) = B BWE) sz a1y agm— 1) = 12 4 7).

[Var(y)]3/?
Similarly, since kurtosis is invariant to linear transformations
El{ly-Ew}] _, -
/6 ( ) 52( ) [V(I/f’( )] =b 2E[{y_ E(y)}4]7
where
(A1) El{y - E(y)}'] = E(y*) — 4E(y*) E(y) + 6 E(y*)[E(y))* - 3[E(y)]*.
and
E(y) = V2/n(r-1)
E(y*) = (-7 +r
Y
EyY = 3(1+7)/1+7).

)

(v)
E(®) = 2/2/n(r*=1)/(1+71)

(v")

)

(

E{ly—EY =30+7)/0+7) —4r 21 =7 [B3+ 7)1+ 72) + 3(x — 2)7)],

which proves the result.

A.2. Proof of Theorem 3.1. Since z = Vy, where y is the vector of principal components,
we have

E(x) = ZUJ (y5) +ZU] (y5) ZUJ ﬁ‘+ V2/mAj(r; —1)] +ZU] Uik
= ,u+\/2/7rZ)\ 1)vj,

by Lemma 2.1.
The covariance matrix can be written

Var(z) =V -Var(y ZVar Y ) v Zb )\21)]1)] +Z)\2v] = VAoV,

again using Lemma 2.1.
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A.3. Proof of Theorem 3.2. We first prove the expression for the multivariate skewness.
Since x = Vy, where y are the principal components of x,

/Bl,p(x) = ﬂl,p(Vy) = /Bl,p(y)a

by the invariance of 3, , under linear transformations (Mardia, 1970). Let v and w be in-
dependent random vectors from the same distribution of y, m = (ml, .ymyp) = E(y) and
Var(y) = A = Diag(o?,.. ,ap), where 0 )\2 if j € Q° and 0 bj)\? it j € Q. By
definition, 8, ,(y) = E(M,,,), where M,,, may be decomposed as

My = (v = m)' A (w = m) = 5_y 0572 (v; — my) (w; = mj) = 3]

j:lMUj’lUj7

and therefore
M3 = by 7M’"1 <o M2
vw r1+...+1p=3 7'1' T'p 1w vptp

Since E(Mvjwj) =0 for j = 1,...,p, by the independence of the elements of v and w, we have
E(M’l:))’w) = Eg:lE(MSjwj)v
which proves that
51,p(y) = E§:151,1(yj)-

Since 3, = B% and §; = 0 for j € Q°, the result now follows from Lemma 2.2.
To derive the multivariate kurtosis, note that

52,;;(37) = 52,p(Vy) = 52,p(y)7
by the invariance of 3, ,, under linear transformations (Mardia, 1970). Now, by the diagonality
of Var(y) = A,

2 _
Myy - 2? + 2 Z YiYi y]y]
1<j
Thus,
2
E(Myy) = Z‘Z; + 2 Z E yzyz y]y])
1<J
= Eﬁ-’:lE(Miy ) +p(p—1).

since E(My,;,,) =1 for j=1,...,p. Thus

Bop(¥) = X1 82,,(y5) + p(p Zﬂz y;) — 3¢+ p(p+2).

since (5, (y;) = B2(y;) and By(y;) = 3 for j € Q°. The result now follows from Lemma 2.2.

A.4. Proof of Theorem 3.3. Since z = Vy,

0x(t) = Elexp(t'z)] = Elexp(t'Vy)] = [ | Elex(t'vjy;)] | [ Elexp(t'v;y;)]
Qe Q

= Hgbijt H (Ut)—exp{Z[u]Ut—vt )\2}H¢>y Ut

Qe
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where, using Lemma 2.3,
2)\; {exp[—()\jvg-t)Q/Q]@(—Ajvg-t) +7; exp[—()\jTjU;-t)Q/Z](I)(—)\jTjU;-t)}
Aj(L+ 7;) exp(p;v3t)

Py, (vjt) = for j € Q.

A.5. Proof of Lemma 4.1. It follows from John (1982) that the log likelihood is

n 2 1 S2
L, A\, 1) = §log <7r> —nlogA—nlog(1+7)— 2 (51 + 72) ,
where

s1 = 2(551*#)2,

T
Sy = Z (x; — M)Q .
IC
Hence, the first derivatives are
ol n n 1 ( n 32)
= DS (g 22
B2\ PN CANSI=Y
ol n S9
> = -t as
or 1+7 M3
implying
R
o (e

n
Insertion of these into the log likelihood yields

~ 2 3
l (u, A,T) = glog (W—Z) —5nlog{g (W)},
and the result follows. It is straightforward to check that we indeed have a maximum.
A.6. Proof of Theorem 4.1. Write z; = V' (x; — p), for observation i, where i = 1,2, ..., n.
The probability density of z; is
-1 -1

p ~
f (Z@) =1 H )\j H (1 + Tj) exp <%y;A_1yz> ,
j=1

jeQ

1\ 2\
1 = T - )
' <w27r> m
A is diagonal with ith element )\]2-7']2 if j € Q and z; > 0, and )\]2- otherwise. Hence, the
likelihood is

where

—-n —

p " n
1 ~
L(p,2,7,Q)=c H)\j H (1+75) exp (—5 Z%A‘lzz) ,
i=1

J=1 je
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where, denoting the components of z; by z;, 7 =1,...,p,
tzi = Z )‘;22% + Z )\;22% (1{Zij<0} + 7;21{%'20}) ’
JjeQe JjEQ

where 14 is the indicator function of the event A. Thus,

L(p,2,7,Q)=ct H { " exp (—%Z)\jz'z?j>}
i=1

jeQr
e~ _ _
X H Pl 1+7'J eXp{§Z)\j 22i2j (1{Zij<0} +Tj21{zij20})}
j€Q i=1
IT 2o ) T Loy (V7).
jeQe JjeQ

where Lyj ();) is the likelihood arising from observations of n independent N (0, )\3) vari-
ables and Lg ; (A\;,7;) is the likelihood arising from observations of n independent univariate
SN (0, )\, 7;) variables. Hence, from Lemma 4.1 and standard theory, the likelihood maxi-
mized w.r.t. A and 7 is
~—n —
co H )\ 3n/2

jee JEQ

where
1\ P—on/2 son N2 olg—p/2)nyan/2
“2= <2_7re> <%> B (776)pn/2 ’
1.2/3 ,
~2 —s17g;if j € Q
X (w, V) = 1 97 ’
J ('u ) { %Zz_l ZU2 ifj c Qc7
~ 525 1/3
Ti (1, V) = <—> ;
81]
and

_ 2 2
95 = (Z Zijl{zij<0}> + (Z Zijl{zij>0}> .
i=1 i=i

Inserting 2;; = v} (v; — p) yields the result.

A.7. Proof of Theorem 5.1. From the proof of Theorem 4.1, the likelihood function can be
written

,anp/2 | | —n 2 J Zj
p(xh "'7xn|u7‘/7)‘77—7 Q? q) = 2n(p72q)/2 <2 )‘] exp < )‘ 2 )
Jjes

H )\n 1 exp [_% (zl/,jzl,j +7'j_2z;7jzu,j)] s

LN AT 22

where z; denotes the jth column of Z = (x — 1oV, 215 = (2ij)iez; and zuj = (2i5)ieze-
The full conditional posteriors of A; and 7; follow directly from multiplying the likelihood

with the priors )\;2 ~ Ga(ay, B;) and 7,7 ~ Ga(v;,6;), respectively.
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To obtain the full conditional posterior of V' we rewrite the first factor of the likelihood as
follows

. 2z 1 3
H )\j exp (—)\j 2373) X exp -3 Z )\j 22323- = exp (——trA 1ZQCZQC) .

jege

Combining this factor with the factor of the likelihood function corresponding to Q we obtain
the result in Theorem 5.1.
The conditional likelihood of i reads

(A.2) ——lnp (ul-) Z)\ ZZj+Z)\J-_2 Zz%—i-TJ_QZzZZJ

JjEQ" JjeQ i€Z; i€T¢

Let us rewrite this expression to show explicitly its dependence on p. All terms which do not
involve u will be discarded. Note first that

Z zgj = Z[U;(l‘@ — Wt =trA; Z zixy + (W Ajp — 20/ Ajx5),

iEIj iEIj iEIj
where A; v], and
-2 2 =2 .y =20 o N A 9, A
T; g zjj = tr A;T; g ziwi + 755 (n —ng) (W Ajp — 20 A;5),
i€T§ i€TS

7o 1 . =C _ )1 .
where Z; =n; " > ;g wi and Zf = (n — nj) ZieI;. xi. Thus,

(A.3) Z)\ 2 Zz + 7 QZZU = Bo+ (/' Bu —2p'b,

JjeQ 1€Z; i€

where Bo =3 "ico A/ Ztr A, <ZZeI zizy + 7'}2 ZieI; :I:m/), B=3% 0o )\;2113-119 [ +7';2(n—

nj)and b=3 g )\] vi[n;%; + 75 2(n — n;)z5]. Correspondingly,
(A4) Z )\]72,2;25 =Co+ (/' Cu—24c,
jeQe

where Cy = ZJEQC)\ 2tr(A; 0 i) = tr(m’xVQCA;VéC), C=mn) g )\]._211]'11} and

C=MNY jcge )\] v;v;Z. Thus, inserting (A.3) and (A.4) in (A.2) and multiplying the likelihood
with the N, (ug, Qo) prior we obtain
1
—5p(ul) o< Co+p'Cpu—2p'c+ Bo+ i B —2p'b + g™ i — 20/ g
= Bo+Co—H(B+C+ Q" a+ (n—n)(B+C+Q")(n—p),
where fi = (B + C + Qg )1 (b + ¢ + 1),

B+C= Z )\j—?[nj + 7']._2(71 — nj)]vjv;- +n Z )‘j_ij ; — VAV,
JeQ jegr
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A =diag(ly, ..., 1), lj = nil)\? for j € Q¢ and I = [n; +T-72(n—nj)]*1)\? for j € Q°. Finally,

b—i—c-Z)\ vj ][x]n]—i-a:T Z)\ VU Zmz zp:Aijvjvéwj
j=1

jeQ jege

where w; = nZ for j € Q° and w; = n;¥; + (n— nj)T; f; for j € Q.
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