

ENERGY INSTITUTE

Dept. of Thermodynamics and Environmental Engineering

SPECIFICATION =

- measurement of single or two mutually per pendicular components of velocity vector up to ±180 m/s (synchronous 2D measurement)
- measuring frequency up to 100,000 samples/sec
- typical size of measuring volume smaller than 1 mm³
- high speed synchronous measurement of another 4 quantities in addition to LDA signals
- cyclic processes recording, measurement triggered in by external event
- when combined with 3D positioning system, complete flow domain measurement
- no need for calibration of measured velocity due to calibration certificate

Spray droplet speed

Power spectral density of velocity fluctuations

Flow Explorer Mini LDA Laser Doppler anemometer by Dantec Dynamics

The anemometer is a compact and portable device for contactless measurement of fluid flow or particle speed (aerosol, droplets, bubbles, seeding particles). It is a non-intrusive optical method for time and space resolved measurement within single or two-phase environment based on light reflection and refraction. The apparatus performs a single-point measurement of high spatial resolution; by traversing in 2 or 3 dimensions, the entire domain can be observed.

Dantec Dynamics FlowExplorer Mini LDA

TYPICAL APPLICATIONS

- studies of flow patterns of two-phase flow bubble flow, aerosols and sprays
- studies of aerodynamics and hydrodynamics in free/unbounded environment and/or transparent models (pipe and mini/micro-channel flow, air terminal device and nozzle jet flow, flow in rooms)
- studies on fluid dynamics, turbulence, boundary layer flow
- flowmeter and anemometer calibration
- measurement in cases featured by changes in flow direction and at speeds fluctuating about zero, cyclic and transition flow
- boundary conditions and input data for numerical simulations

PROVIDED OUTCOMES

- histograms of velocity and detection (transit) time of particles
- velocity statistics, mean and rms velocities, calculation of other derived quantities
- turbulence intensity, estimation of turbulence spectrum

Ing. Jan Jedelský, Ph.D.

el: +420 541 143 266 | e-mail: jedelsky@fme.vutbr.cz

Department of Thermodynamics and Environmental Engineering Faculty of Mechanical Engineering, Brno University of Technology Technická 2896/2, Brno 616 69, Czech Republic